精英家教网 > 高中数学 > 题目详情
12.数列{an}中,a2n=a2n-1+(-1)n,a2n+1=a2n+n,a1=1,则a20=46.

分析 由已知数列递推式分别取n=1,2,3,…,10,累加求得答案.

解答 解:由a2n=a2n-1+(-1)n,得a2n-a2n-1=(-1)n
由a2n+1=a2n+n,得a2n+1-a2n=n,
∴a2-a1=-1,a4-a3=1,a6-a5=-1,…,a20-a19=1.
a3-a2=1,a5-a4=2,a7-a6=3,…a19-a18=9.
又a1=1,
累加得:a20=46.
故答案为:46.

点评 本题考查数列递推式,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某商场对A 商品近30 天的日销售量y(件)与时间t(天)的销售情况进行整理,得到如下数据经统计分析,日销售量y(件)与时间t(天)之间具有线性相关关系.
 时间(t) 2 4 6 8 10
 日销售量(y) 38 37 32 3330 
(1)请根据上表提供的数据,用最小二乘法原理求出 y 关于t的线性回归方程$\widehaty=bx+a$;
(2)已知A 商品近30 天内的销售价格Z(元)与时间t(天)的关系为:z=$\left\{\begin{array}{l}{t+20,(0<20,t∈N)}\\{-t+100,(20≤t≤30,t∈N)}\end{array}\right.$根据(1)中求出的线性回归方程,预测t为何值时,A 商品的日销售额最大.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}-\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展开式的常数项为15,则$\int_{-a}^a{(\sqrt{1-{x^2}}+sin2x)dx}$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x3-3x+1,x∈[-2,2]的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果复数$\frac{2+ai}{1+2i}$的实部与虚部相等,则实数a等于(  )
A.$\frac{2}{3}$B.6C.-6D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)导函数的图象如图所示,则下列说法错误的是(  )
A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$\sqrt{3}$,AB=2$\sqrt{2},AC=\sqrt{2},∠BAC={60°}$,则此球的体积等于(  )
A.$\frac{{8\sqrt{2}π}}{3}$B.$\frac{9π}{2}$C.$\frac{{5\sqrt{10}π}}{3}$D.$\frac{{4\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m∈R,“方程ex+m-1=0有解”是“函数y=logmx在区间(0,+∞)为减函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果实数x,y满足(x-2)2+y2=2,则$\frac{y}{x}$的范围是(  )
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

同步练习册答案