精英家教网 > 高中数学 > 题目详情
18.已知函数g(x)=$\frac{2}{x}-alnx({a∈R}),f(x)={x^2}$+g(x).
(1)试判断g(x)的单调性;
(2)若f(x)在区间(0,1)上有极值,求实数a的取值范围;
(3)当a>0时,若f(x)有唯一的零点x0,试求[x0]的值.(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2,[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

分析 (1)求出g(x)的导数,讨论当a≥0时,当a<0时,由导数大于0,可得增区间;导数小于0,可得减区间,注意定义域;
(2)求出f(x)的导数,令h(x)=2x3-ax-2,x∈(0,+∞),求出导数,讨论a的符号,判断单调性,即可得到所求a的范围;
(3)由(2)可知:f(1)=3知x∈(0,1)时,f(x)>0,则x0>1,讨论f(x)在x>1的单调性,再由零点的定义和极值点的定义,可得x0的方程,构造函数$t(x)=2lnx-1-\frac{3}{{{x^3}-1}}(x>1)$,判断单调性,由零点存在性定理知 t(2)<0,t(3)>0,即可得到所求值.

解答 解:(1)$g(x)=\frac{2}{x}-alnx(x>0)$,$g'(x)=-\frac{2}{x^2}-\frac{a}{x}=-\frac{ax+2}{x^2}$
①当a≥0时,g'(x)<0,∴函数g(x)在区间(0,+∞)上单调递减;
②当a<0时,由g'(x)=0,解得$x=-\frac{2}{a}$,
当$x∈(0,-\frac{2}{a})$时,g'(x)<0,此时函数g(x)单调递减;
当$x∈(-\frac{2}{a},+∞)$时,g'(x)>0,此时函数g(x)单调递增.         …(3分)
(2)f(x)=x2+g(x),其定义域为(0,+∞).
$f'(x)=2x+g'(x)=\frac{{2{x^3}-ax-2}}{x^2}$,…(4分)
令h(x)=2x3-ax-2,x∈(0,+∞),h'(x)=6x2-a,
当a<0时,h'(x)>0恒成立,∴h(x)在(0,+∞)上为增函数,
又h(0)=-2<0,h(1)=-a>0,
∴函数h(x)在(0,1)内至少存在一个变号零点x0,且x0也是f'(x)的变号零点,
此时f(x)在区间(0,1)内有极值.                   …(5分)
当a≥0时,h(x)=2(x3-1)-ax<0,即x∈(0,1)时,f'(x)<0恒成立,
∴函数f(x)在(0,1)单调递减,此时函数f(x)无极值 …(6分)
综上可得:f(x)在区间(0,1)内有极值时实数a的取值范围是(-∞,0);…(7分)
(3)∵a>0时,函数f(x)的定义域为(0,+∞)
由(2)可知:f(1)=3知x∈(0,1)时,f(x)>0,∴x0>1.
又f(x)在区间(1,+∞)上只有一个极小值点记为x1
且x∈(1,x1)时,f'(x)<0,函数f(x)单调递减,
x∈(x1,+∞)时,f'(x)>0,函数f(x)单调递增,
由题意可知:x1即为x0.                  …(9分)
∴$\left\{{\begin{array}{l}{f({x_0})=0}\\{f'({x_0})=0}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{x_0^2+\frac{2}{x_0}-aln{x_0}=0}\\{2x_0^3-a{x_0}-2=0}\end{array}}\right.$消去可得:$2ln{x_0}=1+\frac{3}{x_0^3-1}$,
即$2ln{x_0}-(1+\frac{3}{x_0^3-1})=0$
令$t(x)=2lnx-1-\frac{3}{{{x^3}-1}}(x>1)$,则t(x)在区间(1,+∞)上单调递增
又∵$t(2)=2ln2-1-\frac{3}{{{2^3}-1}}=2×0.6973-1-\frac{3}{7}<2×\frac{7}{10}-1-\frac{3}{7}=-\frac{1}{35}<0$$t(3)=2ln3-1-\frac{3}{{{3^3}-1}}=2×1.099-1-\frac{3}{26}>2×1-1-\frac{3}{26}=\frac{23}{26}>0$
由零点存在性定理知 t(2)<0,t(3)>0
∴2<x0<3∴[x0]=2.    …(12分)

点评 本题考查导数的运用:求单调区间和极值,考查函数零点定理的运用,同时考查分类讨论和构造函数法,以及化简整理的运算能力,具有一定的综合性,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.i为虚数单位,若复数z=(1-ai)(1+i)(a∈R)的虚部为-3,则|z|=(  )
A.$3\sqrt{2}$B.4C.$\sqrt{34}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,焦点到相应准线的距离为1.
(1)求椭圆的标准方程;
(2)若P为椭圆上的一点,过点O作OP的垂线交直线$y=\sqrt{2}$于点Q,求$\frac{1}{{O{P^2}}}+\frac{1}{{O{Q^2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在圆x2+y2=9上任取一点P,过点P作x轴的垂线PD,D为垂足,点M满足$\overrightarrow{DM}=\frac{2}{3}\overrightarrow{DP}$;当点P在圆x2+y2=9上运动时,点M的轨迹为E.
(1)求点M的轨迹的方程E;
(2)与已知圆x2+y2=1相切的直线l:y=km+m交E于A,B两点,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知-1,a1,a2,-9成等差数列,-9,b1,b2,b3,-1成等比数列,则b2(a2-a1)的值为(  )
A.8B.-8C.±8D.$±\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{5π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
 分组 频数 频率
[50,60) 5 0.05
[60,70) a 0.20
[70,80) 35 b
[80,90) 25 0.25
[90,100) 15 0.15
 合计 100 1.00
( I)求a,b的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=2,cosB=$\frac{1}{3}$,点D在线段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的长;
(2)若BD=2DC,△ADC的面积为$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

同步练习册答案