| A. | $\frac{7}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{4}$ |
分析 根据平移变换的规律求解出g(x),根据函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减可得x=$\frac{π}{3}$时,g(x)取得最大值,求解可得实数ω的值.
解答 解:由函数f(x)=sinωx(?>0)的图象向右平移$\frac{π}{12}$个单位得到g(x)=sin[ω(x$-\frac{π}{12}$)]=sin(ωx-$\frac{ωπ}{12}$),
函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减,可得x=$\frac{π}{3}$时,g(x)取得最大值,
即(ω×$\frac{π}{3}$-$\frac{ωπ}{12}$)=$\frac{π}{2}+2kπ$,k∈Z,?>0.
当k=0时,解得:ω=2.
故选:C.
点评 本题主要考查了三角函数图象的平移变换和性质的灵活运用.属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜好体育运动 | 不喜好体育运动 | 合计 | |
| 男生 | 20 | 5 | 25 |
| 女生 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B={x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com