精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有
①y=$\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(  )
A.1个B.2个C.3个D.4个

分析 对于①,先根据定义域选择解析式来构造不等式,当0≤x≤1时,由2(1-x)≤x求解;当1<x≤2时,由x-1≤x求解,取后两个结果取并集;
对于②,先求得f(0),f(1),f(2),再分别求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再观察与自变量是否相等即可;
对于③,看问题有2016,2017求值,一定用到周期性,所以先求出几个,观察是以4为周期,求解即可;
对于④,结合①②③可得$\frac{2}{3}$、0、1、2、$\frac{8}{9}$、$\frac{2}{9}$、$\frac{14}{9}$、$\frac{5}{9}$∈M,进而可得结论.

解答 解:当0≤x<1时,f(x)=2(1-x);
当1≤x≤2时,f(x)=x-1.
即有f(x)=$\left\{\begin{array}{l}{2(1-x),0≤x<1}\\{x-1,1≤x≤2}\end{array}\right.$,
画出y=f(x)在[0,2]的图象.
对于①,可得f(x)≤x,当1≤x≤2时,x-1≤x成立;
当0≤x<1时,2(1-x)≤x,解得$\frac{2}{3}$≤x<1,即有定义域为{x|$\frac{2}{3}$≤x≤2},
故①正确;
对于②,当x=0时,f3(0)=f[f2(0)]=f(f(f(0)))=f(f(2))=f(1)=0成立;
当x=1时,f3(1)=f[f2(1)]=f(f(f(1)))=f(f(0))=f(2)=1成立;
当x=2时,f3(2)=f[f2(2)]=f(f(f(2)))=f(f(1))=f(0)=2成立;
即有A=B,故②正确;
对于③,f1($\frac{8}{9}$)=2(1-$\frac{8}{9}$)=$\frac{2}{9}$,f2($\frac{8}{9}$)=f(f($\frac{8}{9}$))=f($\frac{2}{9}$)=2(1-$\frac{2}{9}$)=$\frac{14}{9}$,
f3($\frac{8}{9}$)=f(f2($\frac{8}{9}$))=f($\frac{14}{9}$)=$\frac{14}{9}$-1=$\frac{5}{9}$,f4($\frac{8}{9}$)=f(f3($\frac{8}{9}$))=f($\frac{5}{9}$)=2(1-$\frac{5}{9}$)=$\frac{8}{9}$,
一般地,f4k+r($\frac{8}{9}$)=fr($\frac{8}{9}$)(k,r∈N).
即有f2016($\frac{8}{9}$)+f2017($\frac{8}{9}$)=f4($\frac{8}{9}$)+f1($\frac{8}{9}$)=$\frac{8}{9}$+$\frac{2}{9}$=$\frac{10}{9}$,故③不正确;
对于④,由(1)知,f($\frac{2}{3}$)=$\frac{2}{3}$,∴fn($\frac{2}{3}$)=$\frac{2}{3}$,则f12($\frac{2}{3}$)=$\frac{2}{3}$,∴$\frac{2}{3}$∈M.
由(2)知,对x=0、1、2,恒有f3(x)=x,∴f12(x)=x,则0、1、2∈M.
由(3)知,对x=$\frac{8}{9}$、$\frac{2}{9}$、$\frac{14}{9}$、$\frac{5}{9}$,恒有f12(x)=x,∴$\frac{8}{9}$、$\frac{2}{9}$、$\frac{14}{9}$、$\frac{5}{9}$∈M.
综上所述$\frac{2}{3}$、0、1、2、$\frac{8}{9}$、$\frac{2}{9}$、$\frac{14}{9}$、$\frac{5}{9}$∈M.
∴M中至少含有8个元素.故④正确.
故选:C.

点评 本题考查的知识点是分段函数及分段不等式的解法,元素与集合关系的判定,函数的周期性,函数恒成立问题,分段函数问题要注意分类讨论,还考查了分段函数多重求值,要注意从内到外,根据自变量取值选择好解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若2tanα=3tan$\frac{π}{8}$,则tan(α-$\frac{π}{8}$)=$\frac{5\sqrt{2}+1}{49}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在圆x2+y2=9上任取一点P,过点P作x轴的垂线PD,D为垂足,点M满足$\overrightarrow{DM}=\frac{2}{3}\overrightarrow{DP}$;当点P在圆x2+y2=9上运动时,点M的轨迹为E.
(1)求点M的轨迹的方程E;
(2)与已知圆x2+y2=1相切的直线l:y=km+m交E于A,B两点,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{5π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的不等式|x-3|+|x-m|≥2m的解集为R.
(Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
 分组 频数 频率
[50,60) 5 0.05
[60,70) a 0.20
[70,80) 35 b
[80,90) 25 0.25
[90,100) 15 0.15
 合计 100 1.00
( I)求a,b的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),g(x)若的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时,$f(x)=\frac{1}{6}{x^2}-\frac{1}{2}a{x^2}+x$,在x∈(-1,2)上为“凸函数”,则函数f(x)在(-1,2)上结论正确的是(  )
A.既有极大值,也有极小值B.有极大值,没有极小值
C.没有极大值,有极小值D.既无极大值,也没有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),椭圆C短轴的一个端点与长轴的一个端点的连线与圆O:x2+y2=$\frac{4}{3}$相切,且抛物线y2=-4$\sqrt{2}$x的准线恰好过椭圆C的一个焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过圆O上任意一点P作圆的切线l与椭圆C交于A,B两点,连接PO并延长交圆O于点Q,求△ABQ面积的取值范围.

查看答案和解析>>

同步练习册答案