精英家教网 > 高中数学 > 题目详情
5.若2tanα=3tan$\frac{π}{8}$,则tan(α-$\frac{π}{8}$)=$\frac{5\sqrt{2}+1}{49}$.

分析 利用特殊角的三角函数值及二倍角的正切函数公式可求tan$\frac{π}{8}$的值,利用已知及两角差的正切函数公式化简所求,即可计算得解.

解答 解:∵tan$\frac{π}{4}$=1=$\frac{2tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$,整理可得:tan2$\frac{π}{8}$+2tan$\frac{π}{8}$-1=0,解得:tan$\frac{π}{8}$=$\sqrt{2}-1$,或-1-$\sqrt{2}$,(舍去),
∵2tanα=3tan$\frac{π}{8}$,可得:tanα=$\frac{3}{2}$tan$\frac{π}{8}$=$\frac{3}{2}$($\sqrt{2}-1$),
∴tan(α-$\frac{π}{8}$)=$\frac{tanα-tan\frac{π}{8}}{1+tanαtan\frac{π}{8}}$=$\frac{\frac{3}{2}(\sqrt{2}-1)-(\sqrt{2}-1)}{1+\frac{3}{2}(\sqrt{2}-1)^{2}}$=$\frac{5\sqrt{2}+1}{49}$.
故答案为:$\frac{5\sqrt{2}+1}{49}$.

点评 本题主要考查了特殊角的三角函数值,二倍角的正切函数公式,两角差的正切函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)对任意x∈[a,+∞),都有f(x)≤x-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(1,m-$\frac{3}{2}$),$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=(  )
A.3B.0C.$\frac{13}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=aln(x+2)-x2在(0,1)内任取两个实数p,q,且p>q,若不等式$\frac{f(p+1)-f(q+1)}{p-q}>2$恒成立,则实数a的取值范围是(  )
A.(-∞,24]B.(-∞,12]C.[12,+∞)D.[24,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{{a{x^2}+bx}}{e^x}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,设函数$g(x)=min\left\{{f(x),x-\frac{1}{x}}\right\}(x>0)$,若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,离心率为$\frac{\sqrt{6}}{3}$,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于4$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x+b)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(Ⅰ) 求b的值.
(Ⅱ) 若函数$g(x)={e^x}(\frac{f(x)}{x+1}-a)(a≠0)$,且g(x)在区间(0,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数$y=3sinx+2\sqrt{2+2cos2x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有
①y=$\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案