精英家教网 > 高中数学 > 题目详情
20.已知关于x的不等式|x-3|+|x-m|≥2m的解集为R.
(Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.

分析 (Ⅰ)利用|x-3|+|x-m|≥|(x-3)-(x-m)|=|m-3|,对x与m的范围讨论即可.
(Ⅱ)构造柯西不等式即可得到结论.

解答 解:(Ⅰ)∵|x-3|+|x-m|≥|(x-3)-(x-m)|=|m-3|
当3≤x≤m,或m≤x≤3时取等号,
令|m-3|≥2m,
∴m-3≥2m,或m-3≤-2m.
解得:m≤-3,或m≤1
∴m的最大值为1;
(Ⅱ)由(Ⅰ)a+b+c=1.
由柯西不等式:($\frac{1}{4}$+$\frac{1}{9}$+1)( 4a2+9b2+c2)≥(a+b+c)2=1,
∴4a2+9b2+c2≥$\frac{36}{49}$,等号当且仅当4a=9b=c,且a+b+c=1时成立.
即当且仅当a=$\frac{9}{49}$,b=$\frac{4}{49}$,c=$\frac{36}{49}$时,4a2+9b2+c2的最小值为$\frac{36}{49}$.

点评 本题主要考查了绝对值不等式的几何意义和解法以及柯西不等式的构造思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,离心率为$\frac{\sqrt{6}}{3}$,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于4$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法错误的是(  )
A.若p:?x∈R,x2-x+1≥0,则¬p:?x∈R,x2-x+1<0
B.“$sinθ=\frac{1}{2}$”是“θ=30°或θ=150°”的充分不必要条件
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.已知p:?x∈R,cosx=1,q:?x∈R,x2-x+2>0,则“p∧(¬q)”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0,f(x0)),记函数f(x)的导函数为g(x),则有g'(x0)=0.若函数f(x)=x3-3x2,则$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-8066.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有
①y=$\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的单调函数,且对任意的x,y∈R都有f(x+y)=f(x)+f(y),若动点P(x,y)满足等式f(x2+2x+2)+f(y2+8y+3)=0,则x+y的最大值为(  )
A.2$\sqrt{6}$-5B.-5C.2$\sqrt{6}$+5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知y=f(x+1)+2是定义域为R的奇函数,则f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知{an}是等比数列,a3=1,a7=9,则a5=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了得到函数$y=sin({2x-\frac{π}{6}})$的图象,可以将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

同步练习册答案