精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0,f(x0)),记函数f(x)的导函数为g(x),则有g'(x0)=0.若函数f(x)=x3-3x2,则$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-8066.

分析 推导出函数f(x)=x3-3x2的对称中心为(1,-2),由此能求出$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$的值.

解答 解:∵f(x)=x3-3x2,∴g(x)=3x2-6x,∴g′(x)=6x-6,
∵g′(x0)=6x0-6=0,∴x0=1,∴f(x0)=f(1)=f(1)=1-3=-2,
∴函数f(x)=x3-3x2的对称中心为(1,-2),
∴f(x)+f(2-x)=-4,
∴$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-4×2016+f(1)=-8064+1-3=-8066.
故答案为:-8066.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了一个有奖闯关游戏,游戏分为两个环节.
第一环节“解锁”:给定6个密码,只有一个正确,参赛选手从6个密码中任选一个输入,每人最多可输三次,若密码正确,则解锁成功,该选手进入第二个环节,否则直接淘汰.
第二环节“闯关”:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得10个、20个、30个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏,也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为$\frac{4}{5},\frac{3}{4},\frac{2}{3}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功与否互不影响.
(1)求某参赛选手能进入第二环节的概率;
(2)设选手甲在第二环节中所得学豆总数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足z(1+i)=1-i,则|z|=(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P-CD-A的大小为45°,求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{5π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{176}{3}$B.$\frac{160}{3}$C.$\frac{128}{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的不等式|x-3|+|x-m|≥2m的解集为R.
(Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={-1,0,1,2},B={x|x-1<0},则A∩B=(  )
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象与直线y=b(0<b<2)的三个相邻交点的横坐标分别是$\frac{π}{6},\frac{5π}{6},\frac{7π}{6}$,且函数f(x)在x=$\frac{3π}{2}$处取得最小值,那么|φ|的最小值为(  )
A.$\frac{3π}{2}$B.πC.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案