精英家教网 > 高中数学 > 题目详情
已知椭圆C:的短轴长为,右焦点与抛物线的焦点重合, 为坐标原点
(1)求椭圆C的方程;
(2)设是椭圆C上的不同两点,点,且满足,若,求直线AB的斜率的取值范围.
解:(1)由已知得,所以椭圆的方程为 ………4分
(2)∵,∴三点共线,而,且直线的斜率一定存在,所以设的方程为,与椭圆的方程联立得
                            
,得.                    …………………6分
          ①
又由得:    ∴          ②.
将②式代入①式得:
消去得:               …………………9分
时, 是减函数, ,
,解得,
又因为,所以,即
∴直线AB的斜率的取值范围是    …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的两焦点为,并且经过点.
(1)求椭圆的方程;
(2)已知圆:,直线:,证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
分别是椭圆 的左、右焦点,是该椭圆上的一个动点,为坐标原点.

(1)求的取值范围;
(2)设过定点的直线与椭圆交于不同的两点M、N,且∠为锐角,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在的函数.给出下列结论:
①函数的值域为
②关于的方程个不相等的实数根;
③当时,函数的图象与轴围成的图形面积为,则
④存在,使得不等式成立
其中你认为正确的所有结论的序号为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点为F1,F2,P为椭圆上一点,若,则
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆M: 的左,右焦点分别为·的最大值的取值范围是〔〕,则椭圆M的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知是椭圆的左、右焦点,过点F1作倾斜角为 的直线交椭圆于A,B两点,的内切圆的半径为
(I)求椭圆的离心率;
(II)若,求椭圆的标准方程。

查看答案和解析>>

同步练习册答案