精英家教网 > 高中数学 > 题目详情
已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
解:(Ⅰ)由题意可知:    ……2分
解得:                                         ……3分
故椭圆的方程为:                ……4分
(II)设直线的方程为, ……5分
联立,得,整理得       。。。。。。7分
直线过椭圆的左焦点F
方程有两个不等实根.    ….…8分

  …..9分                  …..10分   
垂直平分线的方程为,          …..11分
…..12分
                                 ……  13分
                       ….14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知F是椭圆=1的右焦点,点P是椭圆上的动点,点Q是圆上的动点.
(1)试判断以PF为直径的圆与圆的位置关系;
(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆左焦点且倾斜角为的直线交椭圆于两点,若,则椭圆的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为_________­­­­­______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与椭圆相交于两点,分别过轴作垂线,若垂足恰为椭圆的两个焦点,则等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( (本题满分15分
)椭圆的中心在原点,焦点在轴上,离心率为,并与直线相切.

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过圆上任意一点作椭圆的两条切线. 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的短轴长为,右焦点与抛物线的焦点重合, 为坐标原点
(1)求椭圆C的方程;
(2)设是椭圆C上的不同两点,点,且满足,若,求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.求满足下列条件的椭圆的标准方程.
(1)已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆长轴长为4,以y轴为准线,且左顶点在抛物线y2=x-1上,则椭圆离心率e的取值范围为
A.0<e≤B.≤e<1C.≤e<1D.0<e≤

查看答案和解析>>

同步练习册答案