精英家教网 > 高中数学 > 题目详情
(本小题满分16分)
已知F是椭圆=1的右焦点,点P是椭圆上的动点,点Q是圆上的动点.
(1)试判断以PF为直径的圆与圆的位置关系;
(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.
解析:(1)取PF的中点记为N,椭圆的左焦点记为,连结ON,则ON为的中位线,所以ON=.又由椭圆的定义可知,+PF=2a,从而=2a-PF,故ON==a-.所以以PF为直径的圆与圆内切.
(2)设椭圆的半焦距为c,M (x,0),Q (),F (c,0),由=e,得,即.把代入并化简整理,得=0,要此方程对任意的Q ()均成立,只要=0即可,此时x=.所以x轴上存在点M,使得=e,M的坐标为(,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点分别为,直线轴于点,且

(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的顶点的周长为.设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求证:直线过定点;
(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的左、右焦点为,过点斜率为正数的直线交两点,且成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)若直线y=kx(k<0)与交于C、D两点,求使四边形ABCD面积S最大时k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与轴相交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)试用表示△的面积,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(5,0)和⊙B:,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q,则点Q(x,y)所满足的轨迹方程为  ( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点为F1,F2,P为椭圆上一点,若,则
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案