精英家教网 > 高中数学 > 题目详情
(本题满分12分)
已知椭圆的左、右焦点为,过点斜率为正数的直线交两点,且成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)若直线y=kx(k<0)与交于C、D两点,求使四边形ABCD面积S最大时k的值。
(Ⅰ)根据椭圆定义及已知条件,有
|AF2|+|AB|+|BF2|=4a,                                                                                           ①
|AF2|+|BF2|=2|AB|,                                                                                                  ②
|AF2|2+|AB|2=|BF2|2,                                                                                     ③…3分
由①、②、③,解得|AF2|=a,|AB|=a,|BF2|=a,
所以点A为短轴端点,b=c=a,Γ的离心率e==.…………………5分
(Ⅱ)由(Ⅰ),Γ的方程为x2+2y2=a2.                                          
不妨设C(x1,y1)、D(x2,y2)(x1<x2),
则C、D坐标满足
由此得x1=-,x2=.
设C、D两点到直线AB:x-y+a=0的距离分别为d1、d2
因C、D两点在直线AB的异侧,则
d1+d2=+=
===.………………………8分
∴S=|AB|( d1+d2)=·a·=·.
设t=1-k,则t>1,==,
当=,即k=-时,最大,进而S有最大值.……………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知F是椭圆=1的右焦点,点P是椭圆上的动点,点Q是圆上的动点.
(1)试判断以PF为直径的圆与圆的位置关系;
(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为_________­­­­­______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆中心的直线与椭圆交于A、B两点,右焦点为F2,则△ABF2
 
的最大面积是(   )                                                                                                   
A.                         B.                         C.                  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若AB是过二次曲线中心的任一条弦,M是二次曲线上异于A、B的任一点,且AM、BM均与坐标轴不平行,则对于椭圆。类似地,对于双曲线=         。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为  (     )
  
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C,以抛物线的焦点为椭圆的一个焦点,且短轴一个端点与两个焦点可组成一个等边三角形,则椭圆C的离心率为                                 
A       B      C       D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知椭圆短轴端点为A,B.点P是椭圆上除A,B外任意一点,则直线PA,PB的斜率之积为       .

查看答案和解析>>

同步练习册答案