精英家教网 > 高中数学 > 题目详情
过椭圆中心的直线与椭圆交于A、B两点,右焦点为F2,则△ABF2
 
的最大面积是(   )                                                                                                   
A.                         B.                         C.                  D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆的弦被点(4,2)平分,则此弦所在的直线方程为(  )
A.x-2y="0" B.x+2y-4="0" C.2x+13y-14="0" D.x+2y-8=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜
率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的顶点的周长为.设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆G与双曲线有相同的焦点,且过点
(1)求椭圆G的方程
(2)设是椭圆G的左焦点和右焦点,过的直线与椭圆G相交于A、B两点,请问的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的左、右焦点为,过点斜率为正数的直线交两点,且成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)若直线y=kx(k<0)与交于C、D两点,求使四边形ABCD面积S最大时k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本题满分12分)
已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与轴相交于点
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点,作轴的垂线交椭圆于点为右焦点。若,则椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(18分)已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线(m为常数)对称?若存在,求出满足的条件;若不存在,说明理由。

查看答案和解析>>

同步练习册答案