精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+b
x2+1
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①确定函数的解析式;
②用单调性的定义,证明f(x)在(0,1)上是增函数.
分析:①由函数f(x)是奇函数可得f(0)=0可求b,由f(
1
2
)=
2
5
可求a,进而可求f(x)
②由①可得f(x)=
x
x2+1
,利用单调性的定义设0<x1<x2<1,则f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1
=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
,结合0<x1<x2<1,判断f(x1)与f(x2)的大小即可
解答:解:①∵函数f(x)=
ax+b
x2+1
在(-1,1)上是奇函数
∴f(0)=0
∴b=0…(2分)
又∵f(
1
2
)=
2
5
,解得a=1…(2分)
f(x)=
x
x2+1
…(2分)
②关于f(x)=
x
x2+1
在(0,1)上是增函数的证明如下:
设0<x1<x2<1,则                  …(1分)
f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1
=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
…(2分)
∵0<x1<x2<1
∴x1-x2<0,1-x1x2>0,(x12+1)(x22+1)>0
∴f(x1)-f(x2)<0则f(x1)<f(x2)…(2分)
f(x)=
x
x2+1
在(0,1)上是增函数.…(1分)
点评:本题主要考查了奇函数的性质的应用,f(0)=0,利用该条件可以简化基本运算,函数单调性的定义的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案