精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|1<x2<4},B={x|x≥1},则A∩B=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|-1<x<2}D.{x|-1≤x<2}

分析 解不等式求出集合A,根据交集的定义求出A∩B.

解答 解:集合A={x|1<x2<4}={x|-2<x<-1或1<x<2},
B={x|x≥1},
则A∩B={x|1<x<2}.
故选:A.

点评 本题考查了解不等式与交集的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知一组数据为8,12,10,11,9.则这组数据方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$|{\vec a}|=3,|{\vec b}|=4$,且$({2\vec a-\vec b})•({\vec a+2\vec b})≥4$,求$\vec a$与$\vec b$的夹角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数y=f(x)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足f(x1)f(x2)=1,则称该函数为“依赖函数”.
(1)判断$y=\frac{1}{x^2}$,y=2x是否为“依赖函数”;
(2)若函数y=a+sinx(a>1),$x∈[-\frac{π}{2},\frac{π}{2}]$为依赖函数,求a的值,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)已知PE=$\sqrt{6}$,求A到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上有不共线三点A,B,C,且AB,BC,AC的中点分别为D,E,F,若满足OD,OE,OF的斜率之和为-1,则$\frac{1}{{{k_{AB}}}}+\frac{1}{{{k_{BC}}}}+\frac{1}{{{k_{AC}}}}$=(  )
A.2B.$-\sqrt{3}$C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$在(-∞,+∞)上单调递增,则的取值范围是(  )
A.[4,8)B.(1,+∞)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)满足2x2f(x)+x3f′(x)=ex,f(2)=$\frac{{e}^{2}}{8}$,则x∈[2,+∞)时,f(x)(  )
A.有最大值$\frac{{e}^{2}}{8}$B.有最小值$\frac{{e}^{2}}{8}$C.有最大值$\frac{{e}^{2}}{2}$D.有最小值$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设an=xn,bn=($\frac{1}{n}$)2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn-1,x∈R,a∈N*
(Ⅰ)若x=2,求数列{$\frac{2n-1}{{a}_{n}}$}的前n项和Tn
(Ⅱ)求证:对?n∈N*,方程fn(x)=0在xn∈[$\frac{2}{3}$,1]上有且仅有一个根;
(Ⅲ)求证:对?p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn-xn+p<$\frac{1}{n}$.

查看答案和解析>>

同步练习册答案