精英家教网 > 高中数学 > 题目详情
19.若函数$f(x)=\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$在(-∞,+∞)上单调递增,则的取值范围是(  )
A.[4,8)B.(1,+∞)C.(4,8)D.(1,8)

分析 由已知可知两段函数均为定义域内的增函数,且第二段的最大值小于等于a,联立不等式组得答案.

解答 解:要使函数在(-∞,+∞)上单调递增,
需有$\left\{{\begin{array}{l}{a>1}\\{4-\frac{a}{2}>0}\\{(4-\frac{a}{2})×1+2≤{a^1}}\end{array}}\right.$,解得4≤a<8.
∴a的取值范围是[4,8).
故选:A.

点评 本题考查分段函数的应用,考查函数单调性的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的各项为正,公比q满足q2=4,则$\frac{{{a_3}+{a_4}}}{{{a_5}+{a_6}}}$=(  )
A.$\frac{1}{4}$B.2C.$±\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆$\frac{x^2}{{4{a^2}}}+\frac{y^2}{{3{a^2}}}=1$(a>0)的左焦点为F,直线x=m与椭圆相交于点A、B,则△FAB的周长的最大值是8a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|1<x2<4},B={x|x≥1},则A∩B=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|-1<x<2}D.{x|-1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,公差d≠0,a1=1,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{a_n}{3^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$θ∈({\frac{π}{2},π}),\;\;sinθ=\frac{3}{5}$,则$tan({θ+\frac{π}{4}})=({\;\;\;\;\;\;})$.
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x=lnx,y=log52,z=e-0.5,则(  )
A.x<y<zB.x<z<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l:y=2x+m与曲线y=-$\sqrt{4-{x}^{2}}$有两个公共点,则实数m的取值范围是(  )
A.[-2$\sqrt{5}$,-4]B.(-2$\sqrt{5}$,-4]C.[-2$\sqrt{5}$,-4)D.(-2$\sqrt{5}$,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与圆D:(x-1)2+(y+2)2=4关于直线y=x对称.
(Ⅰ) 求圆C的标准方程;
(Ⅱ)若直线l:y=kx+1与圆C交于A、B两点,且$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

同步练习册答案