精英家教网 > 高中数学 > 题目详情
11.已知x=lnx,y=log52,z=e-0.5,则(  )
A.x<y<zB.x<z<yC.z<y<xD.y<z<x

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵x=lnx>1,y=log52$<lo{g}_{5}\sqrt{5}$=$\frac{1}{2}$,z=e-0.5=$\frac{1}{\sqrt{e}}$$∈(\frac{1}{2},1)$.
∴x>z>y.
故选:D.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,已知a4=8a1,且a1,a2+1,a3成等差数列.则{an}的前5项和为(  )
A.31B.62C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)已知PE=$\sqrt{6}$,求A到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$在(-∞,+∞)上单调递增,则的取值范围是(  )
A.[4,8)B.(1,+∞)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=$\frac{π}{3}$,AB=CC1=2.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)若点E在棱CC1上(不包含端点C,C1),且EA⊥EB1,求直线AE和平面ABC1所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)满足2x2f(x)+x3f′(x)=ex,f(2)=$\frac{{e}^{2}}{8}$,则x∈[2,+∞)时,f(x)(  )
A.有最大值$\frac{{e}^{2}}{8}$B.有最小值$\frac{{e}^{2}}{8}$C.有最大值$\frac{{e}^{2}}{2}$D.有最小值$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记为0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.
等级不合格合格
得分[20,40)[40,60)[60,80)[80,100]
频数6a24b
(Ⅰ)求a,b,c的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中选取5人进行座谈.现再从这5人中任选2人,求这两人都合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.随机变量ξ的分布列如下,且满足E(ξ)=2,则E(aξ+b)的值(  )
ξ123
Pabc
A.0B.1
C.2D.无法确定,与a,b有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|x-s|<t,|y-s|<t,则下列不等式中一定成立的是(  )
A.|x-y|<2tB.|x-y|<tC.|x-y|>2tD.|x-y|>t

查看答案和解析>>

同步练习册答案