精英家教网 > 高中数学 > 题目详情
17.已知一组数据为8,12,10,11,9.则这组数据方差为2.

分析 先求出平均数,由此能求出这组数据的方差.

解答 解:这组数据平均数为:
$\overline{x}$=$\frac{1}{5}$(8+12+10+11+9)=10,
∴这组数据方差为:
S2=$\frac{1}{5}$[(8-10)2+(12-10)2+(10-10)2+(11-10)2+(9-10)2]=2.
故答案为:2.

点评 本题考查一组数据的方差的求法,涉及到平均数、方差等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知m∈R,复数z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,求分别满足下列条件的m的值.
(1)z∈R;               
(2)z是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2-$\frac{1}{{x}^{2}}$(x≠0),若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)=2f(2),则实数a的值是4或$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把函数f(x)=cos2x-sin2x的图象向右平移φ(φ>0)个单位后,恰好与原图象重合,则符合题意的φ的值可以为(  )
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知两点M(-1,0),N(1,0),若直线y=k(x-2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{3}\;\;,\;\frac{{\sqrt{3}}}{3}]$B.$[-\frac{1}{3}\;,\;\frac{1}{3}]$C.$[-\frac{1}{3}\;,\;0)∪(0\;,\;\frac{1}{3}]$D.$[-\frac{{\sqrt{3}}}{3}\;,\;0)∪(0\;,\;\frac{{\sqrt{3}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\ ax+2,x≤0\end{array}\right.$(a∈R),若函数y=|f(x)|-a有三个零点,则实数a的取值范围是(  )
A.a≥-2B.a>2C.0<a<1D.1≤a<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的各项为正,公比q满足q2=4,则$\frac{{{a_3}+{a_4}}}{{{a_5}+{a_6}}}$=(  )
A.$\frac{1}{4}$B.2C.$±\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若b=2asinB,则这个三角形中角A的值是30°或150°..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|1<x2<4},B={x|x≥1},则A∩B=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|-1<x<2}D.{x|-1≤x<2}

查看答案和解析>>

同步练习册答案