精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-$\frac{1}{{x}^{2}}$(x≠0),若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)=2f(2),则实数a的值是4或$\frac{1}{4}$.

分析 先判断函数为偶函数,利用对数的运算法则进行化简求解即可.

解答 解:函数f(x)为偶函数,则f(log2a)+f(log${\;}_{\frac{1}{2}}$a)=2f(2),
等价为f(log2a)+f(-log2a)=2f(2),
即2f(log2a)=2f(2),
则f(log2a)=f(2),
则log2a=2或log2a=-2,
得a=4或$\frac{1}{4}$,
故答案为:4或$\frac{1}{4}$

点评 本题主要考查函数值的计算,根据条件判断函数是偶函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知△ABO中,延长BA到C,使AC=BA,D是将$\overrightarrow{OB}$分成2:1的一个分点,DC和OA交于E,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{OC}$,$\overrightarrow{DC}$.
(2)若$\overrightarrow{OE}$=λ$\overrightarrow{OA}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)+x3是R上的偶函数,若f(1)=2,则f(-1)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=2sin({x-\frac{π}{6}})$,x∈[-π,a]的值域为[-2,1],则实数a的取值范围为$[{-\frac{π}{3},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{x}{{2{e^x}}}+m$(e为自然对数的底数,m∈R).
(1)求函数f(x)的单调区间和极值;
(2)当$m=\frac{1}{e}$时,求证:?x>0,f(x)<x2lnx恒成立;
(3)讨论关于x的方程|lnx|=f(x)的根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知k,b∈R,设直线l:y=kx+b 是曲线y=ex+x的一条切线,则(  )
A.k<1,且b≤1B.k<1,且b≥1C.k>1,且b≤1D.k>1,且b≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$(x+1){(x+\frac{a}{x})^6}$的展开式中,常数项为20,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一组数据为8,12,10,11,9.则这组数据方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$|{\vec a}|=3,|{\vec b}|=4$,且$({2\vec a-\vec b})•({\vec a+2\vec b})≥4$,求$\vec a$与$\vec b$的夹角θ的取值范围.

查看答案和解析>>

同步练习册答案