分析 (1)根据函数的奇偶性得到f(-x)=-f(x),求出a的值即可;
(2)求出函数的导数,得到导函数大于0,从而判断出函数的单调性即可;
(3)根据函数的奇偶性和函数的单调性得到关于m的不等式,解出即可.
解答 解:(1)∵f(-x)=-f(x),
∴f(-x)=$\frac{(a-2{)2}^{x}+a}{{2}^{x}+1}$=$\frac{-a{•2}^{x}-(a-2)}{{2}^{x}+1}$,
∴a-2=-a,解得:a=1;
(2)由(1)得:f(x)=1-$\frac{2}{{2}^{x}+1}$,
f′(x)=$\frac{2ln{2•2}^{x}}{{{(2}^{x}+1)}^{2}}$>0,
∴f(x)在R递增;
(3)结合(1),(2),f(x)是奇函数,f(x)递增,
由f(1-m)+f(1-2m)<0,
得:f(1-m)<f(2m-1),
∴1-m<2m-1,解得:m>2,
故m的范围是(2,+∞).
点评 本题考查了函数的奇偶性和单调性问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1)∪(1,3] | B. | (0,1)∪(1,3) | C. | (0,1)∪(2,+∞) | D. | (0,1)∪(1,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com