精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数
(1)是否存在实数使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式.

(1)当时,函数f(x)为奇函数;(2)证明:见解析。
(3) 

解析试题分析:(1)根据f(x)为奇函数,可确定f(-x)+f(x)=0恒成立.从而可得a值.
(2)利用单调性的定义证明分三个步骤:一取值,二作差变形判断差值符号,三确定单调性.
(3)利用单调性与奇偶性把不等式转化为进一步转化为,
然后利用单调性转化为求解.
(1)    函数f(x)的定义域为 即 …1分
假设存在实数使函数f(x)为奇函数,
 解得    …2分,


时,函数f(x)为奇函数……………4分
(2)证明:任取,且

            …7分
 , 

  
不论取何值,函数f(x)在其定义域上都是增函数. …………9分
(3)由 
函数f(x)为奇函数

由(2)已证得函数在R上是增函数
 
 
不等式的解集为…………14分
考点:函数的奇偶性,单调性的证明,解抽象函数的不等式,一元二次不等式.
点评:判定函数的奇偶性先确定定义域是否关于原点对称;利用单调性证明证明时要注意三个步骤一取值,作差变形,得出结论.变形的目的是判断差值符号.解抽象不等式要注意利用单调性脱掉法则符号f转化为普通不等式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知:
(1)用定义法证明函数上的增函数;
(2)是否存在实数使函数为奇函数?若存在,请求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)证明为R上的单调递增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,且
(1)求函数的解析式;
(2)用单调性的定义证明上是增函数;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知  
(1)求的值;
(2)当(其中,且为常数)时,是否存在最小值,如果存在求出最小值;如
果不存在,请说明理由;
(3)当时,求满足不等式的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),
如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,求每立方米空气中的含药量
y(毫克)与时间t(小时)之间的函数关系式?
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)设函数
(1)证明函数是偶函数;
(2)若方程有两个根,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数 :
(1)写出此函数的定义域和值域;
(2)证明函数在为单调递减函数;
(3)试判断并证明函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数是偶函数.
(1)求的值;
(2)设函数,其中若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

同步练习册答案