精英家教网 > 高中数学 > 题目详情
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=________.
∵P(X=0)==(1-p)2×,∴p=,随机变量X的可能值为0,1,2,3,因此P(X=0)=,P(X=1)=×()2+2××()2,P(X=2)=×()2×2+×()2,P(X=3)=×()2,因此E(X)=1×+2×+3×
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名篮球队员独立地轮流投篮,甲投中的概率为0.4,乙投中的概率为0.6,甲先投,直至有人投中为止,甲队员投球次数为随机变量,求的分布列。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选.
(I)求甲答对试题数ξ的分布列及数学期望;
(II)求甲、乙两人至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知离散型随机变量的分布列为

1
2
3




的数学期望(   )
A.               B.              C.                 D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有大小、质地均相同的4个红球与2个白球.若从中有放回地依次取出一个球,记6次取球中取出红球的次数为ξ,则ξ的期望E(ξ)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从1,2,3,4,5中选3个数,用ξ表示这3个数中最大的一个,则E(ξ)=(  )
A.3B.4.5C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有大小相同的三个球,编号分别为1,2,2,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用X表示所有被取到的球的编号之和,则X的方差为________.

查看答案和解析>>

同步练习册答案