【题目】已知函数(, 是自然对数的底数).
(1)当时,求曲线在点处的切线方程;
(2)当时,不等式恒成立,求实数的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)由导数几何意义得切线斜率为,再根据点斜式求切线方程(2)不等式恒成立问题,一般转化为对应函数最值问题: ,利用导数研究函数最小值时,先根据,得导函数在 上单调递增,因此,即得实数的取值范围.
试题解析:(Ⅰ)当时,有,
则.
又因为,
∴曲线在点处的切线方程为,即
(Ⅱ)因为,令
有()且函数在上单调递增
当时,有,此时函数在上单调递增,则
(ⅰ)若即时,有函数在上单调递增,
则恒成立;
(ⅱ)若即时,则在存在,
此时函数在 上单调递减, 上单调递增且,
所以不等式不可能恒成立,故不符合题意;
当时,有,则在存在,此时上单调递减, 上单调递增所以函数在上先减后增.
又,则函数在上先减后增且.
所以不等式不可能恒成立,故不符合题意;
综上所述,实数的取值范围为
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lg[log ( x﹣1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为,求的分布列和数学期望及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等比数列,a1=1,a4=27; Sn为等差数列{bn} 的前n 项和,b1=3,S5=35.
(1)求{an}和{bn} 的通项公式;
(2)设数列{cn} 满足cn=anbn(n∈N*),求数列{cn} 的前n 项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线C1: ( t 为参数),曲线C2: (r>0,θ为参数).
(1)当r=1时,求C 1 与C2的交点坐标;
(2)点P 为曲线 C2上一动点,当r=时,求点P 到直线C1距离最大时点P 的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=﹣ .
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若C1上的点P对应的参数为t= ,Q为C2上的动点,求PQ中点M到直线C3: (α为参数)距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com