精英家教网 > 高中数学 > 题目详情
已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于(  )
A.B.C.D.1
A

试题分析:双曲线的焦点在轴上,又渐近线方程为,可设,则
由题意知在椭圆中,所以该椭圆的离心率等于的三者关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个平整的操场上竖立着两根相距20米的旗杆,旗杆高度分别为5米和8米,地面上动点P满足:从P处分别看两旗杆顶部,两个仰角总相等,则P的轨迹是(  )
A.直线B.线段C.圆D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左、右焦点,过的直线交椭圆于两点,若,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线E上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线E的方程;
(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且·=0(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题正确的有___________
①已知A,B是椭圆的左右两个顶点, P是该椭圆上异于A,B的任一点,则
②已知双曲线的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为-2.
③若抛物线:的焦点为,抛物线上一点和抛物线内一点,过点Q作抛物线的切线,直线过点且与垂直,则平分
④已知函数是定义在R上的奇函数,, 则不等式的解集是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示椭圆,则实数的取值范围为              

查看答案和解析>>

同步练习册答案