精英家教网 > 高中数学 > 题目详情
方程表示椭圆,则实数的取值范围为              
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点,上一点且轴垂直,直线的另一个交点为
(1)若直线的斜率为,求的离心率;
(2)若直线轴上的截距为,且,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点在抛物线的准线上,则该椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,两个焦点为.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点为,若椭圆上存在一个点,满足以椭圆短轴为直径的圆与线段相切于该线段的中点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案