精英家教网 > 高中数学 > 题目详情
已知椭圆过点,两个焦点为.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
(1) (2)直线的斜率为定值

试题分析:(1) 由题意,设椭圆方程为,将代入即可求出,则椭圆方程可求.
(2)设直线AE方程为:,代入入
,再由点在椭圆上,根据结直线的斜率与的斜率互为相反数,结合直线的位置关系进行求解.
(1)由题意,设椭圆方程为
因为点在椭圆上,所以,解得
所求椭圆方程为
(2)设直线方程为,代入

,点在直线

直线的斜率与直线的斜率互为相反数,在上式中用代替

直线的斜率 
所以直线的斜率为定值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·泰安模拟]曲线=1(m<6)与曲线=1(5<n<9)的(  )
A.焦距相等B.离心率相等
C.焦点相同D.准线相同

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点且离心率为
(1)求椭圆的方程;
(2)若斜率为的直线两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点的坐标分别为.直线相交于点,且它们的斜率之积是,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;
(3)在(2)的条件下,记直线的交点为,试探究点与曲线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•浙江)已知椭圆C1=1(a>b>0)与双曲线C2:x2=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A.a2=B.a2=3C.b2=D.b2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示椭圆,则实数的取值范围为              

查看答案和解析>>

同步练习册答案