精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.

(1)求证:平面B1AC⊥平面ABB1A1
(2)求直线A1C与平面B1AC所成角的正弦值.

【答案】
(1)证明:由直三棱柱性质,B1B⊥平面ABC;

∴B1B⊥AC;

又AB⊥AC,B1B∩BA=B;

∴AC⊥平面ABB1A1,AC平面B1AC;

∴平面B1AC⊥平面ABB1A1


(2)解:如图,连接A1B交AB1于M,连接CM;

∵AB=BB1

∴A1B1=AA1

∴A1M⊥AB1

∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A;

∴A1M⊥平面B1AC;

∴∠A1CM为直线A1C与平面B1AC所成的角;

∵AB=BB1=1,B1C=2;

∴BC= ,AC=

∴直线A1C与平面B1AC所成角的正弦值为


【解析】(1)根据直三棱柱的定义便可得到AC⊥B1B,再根据条件AC⊥AB便可得出AC⊥平面ABB1A1 , 从而由面面垂直的判定定理即可得出平面B1AC⊥平面ABB1A1;(2)可连接A1B,设交AB1于M,可得到A1M⊥AB1 , 从而由面面垂直的性质定理得到A1M⊥平面B1AC,这样∠A1CM便是直线A1C与平面B1AC所成的角,根据条件便可求出A1M和A1C的长,由 即可得出直线A1C与平面B1AC所成角的正弦值.
【考点精析】通过灵活运用平面与平面垂直的判定和空间角的异面直线所成的角,掌握一个平面过另一个平面的垂线,则这两个平面垂直;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a,b,c,d成等比数列,且曲线y=3x﹣x3的极大值点坐标为(b,c)则ad等于(
A.2
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex﹣ax﹣2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1类比到空间,在长方体中,一条对角线与从其一顶点出发的三个面所成的角分别为α,β,γ,则有cos2α+cos2β+cos2γ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市随机抽取一年内100 天的空气质量指数(AQI)的监测数据,结果统计如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,300]

>300

空气质量

轻度污染

轻度污染

中度污染

重度污染

天数

6

14

18

27

20

15


(1)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提
供的统计数据,完成下面的2×2 列联表,并判断是否有95%的把握认为“该城市本年的
空气严重污染与供暖有关”?

非重度污染

严重污染

合计

供暖季

非供暖季

合计

100


(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x 的关系式为y= 试估计该企业一个月(按30 天计算)的经济损失的数学期望.
参考公式:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)。

(Ⅰ)若在区间上存在极值,求实数的取值范围;

(Ⅱ)求证:当时,不等式

查看答案和解析>>

同步练习册答案