【题目】已知实数a,b,c,d成等比数列,且曲线y=3x﹣x3的极大值点坐标为(b,c)则ad等于( )
A.2
B.1
C.﹣1
D.﹣2
【答案】A
【解析】解:∵y′=3﹣3x2=0,则x=±1,
∴y′<0,可得x<﹣1或x>1,y′>0,可得﹣1<x<1,
∴函数在(﹣∞,﹣1),(1,+∞)上单调递减,在(﹣1,1)上单调递增,
∴x=1是极大值点,此时极大值为3﹣1=2.
∴b=1,c=2
又∵实数a,b,c,d成等比数列,
由等比数列的性质可得:ad=bc=2.
故选A
【考点精析】关于本题考查的函数的极值与导数和等比数列的基本性质,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )
A. , , 依次成公比为2的等比数列,且
B. , , 依次成公比为2的等比数列,且
C. , , 依次成公比为的等比数列,且
D. , , 依次成公比为的等比数列,且
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查长沙市中学生平均每人每天参加体育锻炼时间(单位:分钟),按锻炼时间分下一列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上.有l0 000名中学生参加了此项活动,如图是此次调查中某一项的流程图,其输出的结果是6 200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x﹣y|≤5的事件概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线y=x2(x≥0)上某一点A作一切线l,使之与曲线以及x轴所围成的图形的面积为 ,试求:
(1)切点A的坐标;
(2)过切点A的切线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)求证:无论m取什么实数,直线l恒过第一象限;
(2)求直线l被圆C截得的弦长最短时m的值以及最短长度;
(3)设直线l与圆C相交于A、B两点,求AB中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.
(1)求证:平面B1AC⊥平面ABB1A1;
(2)求直线A1C与平面B1AC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣4ax+b(a>0)在区间[0,1]上有最大值1和最小值﹣2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com