【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)求证:无论m取什么实数,直线l恒过第一象限;
(2)求直线l被圆C截得的弦长最短时m的值以及最短长度;
(3)设直线l与圆C相交于A、B两点,求AB中点M的轨迹方程.
【答案】
(1)证明:由(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R得:(x+y﹣4)+m(2x+y﹣7)=0,
∵m∈R,
∴ ,得x=3,y=1,
故l恒过定点D(3,1)
∵D(3,1)在第一象限,
∴直线l恒过第一象限;
(2)解:因为(3﹣1)2+(1﹣2)2=5<25,
则点D在圆C的内部,直线l与圆C相交.
圆心C(1,2),半径为5,|CD|= ,
当截得的弦长最小时,l⊥CD,由于kCD= =﹣ ,
则l的斜率为2,即有﹣ =2,解得m=﹣ .
此时最短弦长为2 =4 ,
故当m=﹣ 时,直线被圆截得的弦最短,最短的弦长是4
(3)解:设M(x,y),则由CM⊥DM得 =﹣1,∴x2+y2﹣4x﹣3y+5=0.
【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长;(3)由CM⊥DM得AB中点M的轨迹方程.
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C与两平行直线 x﹣y﹣8=0和x﹣y+4=0相切,圆心在直线2x+y﹣10=0上.
(1)求圆C的方程.
(2)过原点O做一条直线,交圆C于M,N两点,求OM*ON的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex﹣ax﹣2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1类比到空间,在长方体中,一条对角线与从其一顶点出发的三个面所成的角分别为α,β,γ,则有cos2α+cos2β+cos2γ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 .若曲线在点处的切线方程为(为自然对数的底数).
(1)求函数的单调区间;
(2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com