精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],求a的值.

分析 (1)当a=2时,不等式即|x-2|+|x-1|≥4,再利用绝对值的意义,求得它的解集.
(2)不等式即即|x-a|≤1,即a-1≤x≤a+1,再根据f(x)≤1的解集为[0,2],可得a-1=0,a+1=2,由此求得a的值.

解答 解:(1)当a=2时,函数f(x)=|x-2|,由不等式f(x)≥4-|x-1|,
可得|x-2|+|x-1|≥4.
由于|x-2|+|x-1|表示数轴上的x对应点到2、1对应点的距离之和,而-0.5和3.5对应点到2、1对应点的距离之和正好等于4,
故不等式f(x)≥4-|x-1|的解集为{x|x≤-0.5或 x≥3.5}.
(2)f(x)≤1,即|x-a|≤1,即-1≤x-a≤1,即a-1≤x≤a+1,
再根据f(x)≤1的解集为[0,2],可得a-1=0,a+1=2,求得 a=1.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知sinα=$\frac{4}{5},α∈(0,\frac{π}{2})$,则cosα=$\frac{3}{5}$;tanα=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A为椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1上的动点,MN为圆(x-1)2+y2=1的一条直径,则AM•AN的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,A、B、C所对的边分别是a、b、c,若a•cosC+c•cosA=2b•cosB.
(1)求B的大小;          
(2)若a+c=$\sqrt{10}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将3个大小形状完全相同但颜色不同的小球放入3个盒子中,恰有一个盒子是空的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z1=1+2i,z2=1-i,则z=$\frac{{z}_{1}•{z}_{2}}{1+i}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直线l为一森林的边界,AC⊥l,AC=6,B为AC的中点.野兔与狼分别于A、B同时匀速奔跑,其中野兔的速度是狼的两倍.如果狼比野兔提前或同时跑到某一点,则就认为野兔在这点能被狼抓住.野兔是沿着AD直线奔跑的.问直线l上的点D处在什么位置时,野兔在AD上不可能被狼抓住?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数f(x)=sin4x+$\sqrt{3}$cos4x的图象上每个点的横坐标变为原来的4倍(纵坐标不变),再将所得的图象向左平移φ个单位后的图象所对应的函数恰为偶函数,则φ的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{5π}{6}$D.$\frac{π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2014=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

同步练习册答案