精英家教网 > 高中数学 > 题目详情
2.将3个大小形状完全相同但颜色不同的小球放入3个盒子中,恰有一个盒子是空的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{9}{10}$

分析 先计算将3个大小形状完全相同但颜色不同的小球放入3个盒子中的情况总数,再算出恰有一个盒子是空的情况个数,代入古典概型概率计算公式,可得答案.

解答 解:将3个大小形状完全相同但颜色不同的小球放入3个盒子中,共有以下几类:
①无空盒子:${A}_{3}^{3}$=6种情况;
②有一个空盒子:${C}_{3}^{2}•{(C}_{3}^{2}•{C}_{1}^{1})•{A}_{2}^{2}$=18种情况;
③有两个空盒子:${C}_{3}^{1}$=3种情况;
故共有:27种情况;
故恰有一个盒子是空的概率P=$\frac{18}{27}$=$\frac{2}{3}$,
故选:B

点评 本题考查相互独立事件的概率乘法公式,注意本题中多个小球可以放进同一个盒子中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-3)(x+1)≤0},B={x|2x>2},则A∩B=(  )
A.{x|-1<x<3}B.{x|1<x≤3}C.{x|-1≤x<2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个半径为2的扇形,若它的周长等于所在的圆的周长,则该扇形的圆心角是2π-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax3-x2+x-6在(-∞,+∞)上既有极大值又有极小值,则a的取值范围为(  )
A.a>0B.a<0C.$a>\frac{1}{3}$D.$a<\frac{1}{3}$且a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6在x=3时,v3的值为(  )
A.-486B.-351C.-115D.-339

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.α,β都是锐角,且sinα=$\frac{5}{13}$,cos(α+β)=-$\frac{4}{5}$,则cosβ的值是(  )
A.-$\frac{33}{65}$B.$\frac{16}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知${(\frac{1}{2}+2x)^n}$的二项展开式中前三项的二项式系数和等于46.
(1)求展开式中x5项的二项式系数.
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\vec a$=(4,3),则与向量$\vec a$共线的单位向量为$({\frac{4}{5},\frac{3}{5}})$,$({-\frac{4}{5},-\frac{3}{5}})$.

查看答案和解析>>

同步练习册答案