精英家教网 > 高中数学 > 题目详情
12.已知sinα=$\frac{4}{5},α∈(0,\frac{π}{2})$,则cosα=$\frac{3}{5}$;tanα=$\frac{4}{3}$.

分析 由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值.

解答 解:∵sinα=$\frac{4}{5}$,α∈(0,$\frac{π}{2}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$;tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$.
故答案为:$\frac{3}{5}$;$\frac{4}{3}$

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知集合A={(x,y)|y≤$\sqrt{3}$x},集合B={(x,y)|(x-a)2+y2≤3},若A∩B=B,则实数a的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边过点P(-4m,3m)(m<0),则2sinα+cosα的值是(  )
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某班有50名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.34,则估计该班学生数学成绩在120分以上的人数为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-3)(x+1)≤0},B={x|2x>2},则A∩B=(  )
A.{x|-1<x<3}B.{x|1<x≤3}C.{x|-1≤x<2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0成立.
(1)用定义证明f(x)在[-1,1]上单调递增;
(2)解不等式f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$);
(3)若f(x)≤m(m-a)+2对所有的m∈[-3,-$\frac{1}{2}$]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列不等式中成立的是(  )
A.$sin(-\frac{π}{18})<sin(-\frac{π}{10})$B.$sin\frac{5π}{3}>sin2$
C.$cos(-\frac{23}{5}π)>cos(-\frac{17}{4}π)$D.$tan(-\frac{π}{5})>tan(-\frac{3π}{7})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定,哪种购物方式比较经济(  )
A.第一种B.第二种C.都一样D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],求a的值.

查看答案和解析>>

同步练习册答案