精英家教网 > 高中数学 > 题目详情
20.某班有50名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.34,则估计该班学生数学成绩在120分以上的人数为(  )
A.10B.9C.8D.7

分析 根据考试的成绩ξ服从正态分布N(110,102).得到考试的成绩ξ关于ξ=110对称,根据P(100≤ξ≤110)=0.34,得到P(ξ≥120)=0.16,根据频率乘以样本容量得到这个分数段上的人数.

解答 解:∵考试的成绩ξ服从正态分布N(110,102).
∴考试的成绩ξ关于ξ=110对称,
∵P(100≤ξ≤110)=0.34,
∴P(ξ≥120)=P(ξ≤100)=$\frac{1}{2}$(1-0.34×2)=0.16,
∴该班数学成绩在120分以上的人数为0.16×50=8.
故选:C.

点评 本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=110对称,利用对称写出要用的一段分数的频数,题目得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.△ABC三内角为A,B,C,若关于x的方程x2-xcosAcosB-cos2$\frac{C}{2}$=0有一根为1,则△ABC的形状是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{3}$x3+$\frac{m+1}{2}{x}^{2}$+2+$\frac{1}{x}$在[1,+∞)上单调递增,当实数m取得最小值时,若存在点Q,使得过点Q的直线与曲线y=f(x)围成两个封闭图形时,这两个封闭图形的面积总相等,则点Q的坐标为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U={1,3,5,6},集合M={1,a},∁UM={5,6},则实数a的值为(  )
A.1B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)-g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)=$\frac{x^3}{3}-\frac{{3{x^2}}}{2}$+4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是(  )
A.$({-\frac{9}{4},-2}]$B.[-1,0]C.(-∞,-2]D.$({-\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z=(3m-2)+(m-1)i,m∈R,i为虚数单位.
(1)当m=2时,求复数z的模|z|;
(2)若z表示纯虚数,求m的值;
(3)在复平面内,若z对应的点位于第三象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinα=$\frac{4}{5},α∈(0,\frac{π}{2})$,则cosα=$\frac{3}{5}$;tanα=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.i是虚数单位,n是正整数,则in+in+1+in+2+in+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,A、B、C所对的边分别是a、b、c,若a•cosC+c•cosA=2b•cosB.
(1)求B的大小;          
(2)若a+c=$\sqrt{10}$,b=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案