已知曲线
的极坐标方程为
,曲线
的极坐标方程为
,曲线
、
相交于
、
两点.(
)
(Ⅰ)求
、
两点的极坐标;
(Ⅱ)曲线
与直线
(
为参数)分别相交于
两点,求线段
的长度.
科目:高中数学 来源: 题型:解答题
如图,椭圆
与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.![]()
⑴求椭圆
与椭圆
的方程;
⑵设点
为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点
在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(Ⅰ)求此椭圆的离心率;
(Ⅱ)求证:以线段
为直径的圆过点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在斜率为
的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知过点
的椭圆
:
的右焦点为
,过焦点
且与
轴不重合的直线与椭圆
交于
,
两点,点
关于坐标原点的对称点为
,直线
,
分别交椭圆
的右准线
于
,
两点.![]()
(1)求椭圆
的标准方程;
(2)若点
的坐标为
,试求直线
的方程;
(3)记
,
两点的纵坐标分别为
,
,试问
是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)在直线
:
上取一点
,过点
作轨迹
的两条切线,切点分别为
.问:是否存在点
,使得直线
//
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.![]()
(1)求抛物线
的方程;
(2)当
的角平分线垂直
轴时,求直线
的斜率;
(3)若直线
在
轴上的截距为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的方程为
,双曲线
的两条渐近线为
、
.过椭圆
的右焦点
作直线
,使
,又
与
交于点
,设
与椭圆
的两个交点由上至下依次为
、
.![]()
(1)若
与
的夹角为
,且双曲线的焦距为
,求椭圆
的方程;
(2)求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com