精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为为椭圆在轴正半轴上的焦点,两点在椭圆上,且,定点.
(1)求证:当
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时两点所在直线方程,若不存在,给出理由.
(1)详见解析;(2)(3)存在,最大值为,直线方程为,或

试题分析:(1)设,从而可得各向量的坐标。当,可得间的关系。将点代入椭圆方程,结合间的关系可得,即(2)当时由(1)知故可设。根据解方程组可求得的值。(3)根据向量数量积公式及三角形面积公式分析可知。设直线的方程为,与椭圆方程联立消去 整理为关于的一元二次方程,可得根与系数的关系。从而可用表示。用配方法求最值。注意讨论直线斜率不存在和斜率为0两种特殊情况。
(1)设,则
时,
由M,N两点在椭圆上,
,则舍,
 
(2)当时,不妨设

,椭圆C的方程为 
(3)
设直线的方程为
联立,得

 ,
 
,当,即时取等号 .
并且,当k=0时
当k不存在时
综上有最大值,最大值为
此时,直线的方程为,或
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆的左右焦点为,上顶点为,点关于对称,且
(1)求椭圆的离心率;
(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点
(1)求椭圆的方程及其离心率;
(2)过椭圆右焦点的直线(不经过点)与椭圆交于两点,当的平分线为 时,求直线的斜率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段的中点为,动点满足为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).
(1)求点P的坐标;
(2)焦点在x轴上的椭圆C过点P,且与直线交于A,B两点,若的面积为2,求C的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左、右焦点分别焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点
(1)求椭圆的方程;
(2)若点的坐标为,求过三点的圆的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左右焦点为,一直线过交椭圆于两点,则的周长为   (  )
A.32B.16C.8D.4

查看答案和解析>>

同步练习册答案