精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知椭圆的左、右焦点分别焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点
(1)求椭圆的方程;
(2)若点的坐标为,求过三点的圆的方程;
(3)若,且,求的最大值.
(1)(2);(3)

试题分析:(1)由题易得椭圆中,可得椭圆方程
(2)因为点的坐标为,故,可得的方程为,联立
直线方程和椭圆方程得,可得圆心坐标和半径,则圆的方程可求;
(3)由题,设
可得,将其代入椭圆方程解得  ,
,即得的最大值
1)解:由题意得,故椭圆的方程为
(2)因为所以的方程为
 解得点的坐标为. 因为所以为直角三角形
因为的中点为
所以圆的方程为.
(3)设,则 
因为 ,所以
所以解得  
所以 
 
因为 ,所以,当且仅当,即时,取等号.
最大值为.            
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为为椭圆在轴正半轴上的焦点,两点在椭圆上,且,定点.
(1)求证:当
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时两点所在直线方程,若不存在,给出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆E:=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点,已知A().
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·绵阳模拟]在平面直角坐标系xOy中,椭圆C:=1的左、右焦点分别是F1、F2,P为椭圆C上的一点,且PF1⊥PF2,则△PF1F2的面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2为椭圆的左右焦点,过F1的直线交椭圆于A、B两点,若,则= _____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P(x,y)为椭圆上一点,F为椭圆C的右焦点,若点M满足,则的最小值为(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(  )
A.       B.
C.       D.

查看答案和解析>>

同步练习册答案