精英家教网 > 高中数学 > 题目详情
已知F1、F2为椭圆的左右焦点,过F1的直线交椭圆于A、B两点,若,则= _____________.
7

试题分析:由椭圆方程可得,所以,根据椭圆的定义知,,那么,又,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长为3的线段AB的端点A、B分别在x轴、y轴上移动,=2,则点C的轨迹是(  )
A.线段      B.圆        C.椭圆      D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·厦门模拟]已知椭圆+y2=1,F1,F2为其两焦点,P为椭圆上任一点.则|PF1|·|PF2|的最大值为(  )
A.6B.4C.2D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左、右焦点分别焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点
(1)求椭圆的方程;
(2)若点的坐标为,求过三点的圆的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案