精英家教网 > 高中数学 > 题目详情
(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
(1)
(2)见解析
(1)由得a2=3b2,椭圆方程为x2+3y2=3b2
椭圆上的点到点Q的距离=
①当﹣b≤﹣1时,即b≥1,得b=1
②当﹣b>﹣1时,即b<1,得b=1(舍)
∴b=1
∴椭圆方程为
(2)假设M(m,n)存在,则有m2+n2>1
∵|AB|=,点O到直线l距离
=
∵m2+n2>1
∴0<<1,∴
当且仅当,即m2+n2=2>1时,S△AOB取最大值
又∵
解得:
所以点M的坐标为,△AOB的面积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点A,椭圆E:的离心率为;F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线与E 相交于P,Q两点。当的面积最大时,求的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

(1)求椭圆的标准方程;
(2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2为椭圆的左右焦点,过F1的直线交椭圆于A、B两点,若,则= _____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P(x,y)为椭圆上一点,F为椭圆C的右焦点,若点M满足,则的最小值为(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆内一点R(1,0)作动弦MN,则弦MN中点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆经过点P(1.),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案