精英家教网 > 高中数学 > 题目详情
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是__________.
如图,设椭圆的长半轴长,半焦距分别为a1,c,双曲线的半实轴长,半焦距分别为a2,c,

|PF1|=m,|PF2|
=|F1F2|=n,

问题转化为:已知1<<2,求的取值范围.
由1<<2知<<1,
<<2,因此<+1<3,
<<3,所以<<.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当 时,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左右焦点为,一直线过交椭圆于两点,则的周长为   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

同步练习册答案