精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.
(1)(2)
(1)由,得,再由,得
由题意可知,
解方程组 得,所以椭圆的方程为
(2)解:由(1)可知.设B点的坐标为,直线l的斜率为k,则直线l的方程为,
于是A,B两点的坐标满足方程组
由方程组消去整理,得

设线段AB是中点为M,则M的坐标为
以下分两种情况:
(1)当k=0时,点B的坐标为(2,0).
此时线段AB的垂直平分线为y轴,于是
,∴
(2)当时,线段AB的垂直平分线方程为

,解得


整理得,∴
综合知:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆ab0)的离心率为,且过点().
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:
②当R为何值时,取得最大值?并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.

(1)若点P的坐标,求m的值;
(2)若椭圆C上存在点M,使得,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为,上、下顶点分别为.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.

(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆内一点R(1,0)作动弦MN,则弦MN中点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知内接于椭圆,且的重心G落在坐标原点O,则的面积等于                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆M:的左,右焦点分别为,P为椭圆M上任一点,且的最大值的取值范围是,其中,则椭圆M的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案