精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为(  )
A.B.C.D.
A

试题分析:由于的焦点为.双曲线可化为.由题意可得.依题意得.所以双曲线方程为.所以渐近线方程为.故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

(1)求椭圆的标准方程;
(2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆:,过点的直线与椭圆交于两点,若点恰为线段的中点,则直线的方程为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点恰好与椭圆的一个焦点重合,则(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为,上、下顶点分别为.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.

(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆经过点P(1.),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案