精英家教网 > 高中数学 > 题目详情
已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为________.
8
因为直线过椭圆的左焦点(-,0),所以△ABM的周长为|AB|+|AM|+|BM|=4a=8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

[2014·厦门模拟]已知椭圆+y2=1,F1,F2为其两焦点,P为椭圆上任一点.则|PF1|·|PF2|的最大值为(  )
A.6B.4C.2D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当 时,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与椭圆相交于两点,过点轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是(    )
A.(,+) B.(,+) C.(,+)D.(0,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为 (    )
A.10B.5C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,椭圆的中心为原点,焦点轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为     

查看答案和解析>>

同步练习册答案