精英家教网 > 高中数学 > 题目详情
椭圆的左右焦点为,一直线过交椭圆于两点,则的周长为   (  )
A.32B.16C.8D.4
B

试题分析:∵椭圆∴a=4,b=,c=3根据椭圆的定义∴AF1+AF2=2a=8,∴BF1+BF2=2a=8,∵AF1+BF1=AB,∴△ABF2的周长为4a=16,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为为椭圆在轴正半轴上的焦点,两点在椭圆上,且,定点.
(1)求证:当
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时两点所在直线方程,若不存在,给出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P(x,y)为椭圆上一点,F为椭圆C的右焦点,若点M满足,则的最小值为(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别是椭圆(a>b>0)的左、右焦点,若在直线x=上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(  )
A.       B.
C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆M:的左,右焦点分别为,P为椭圆M上任一点,且的最大值的取值范围是,其中,则椭圆M的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆经过点P(1.),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案