精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆(a>b>0)的左、右焦点,若在直线x=上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(  )
A.B.C.D.
D
设P,F1P的中点Q的坐标为,则kF1P=,kQF2
由kF1P·kQF2=-1,
得y2
因为y2≥0,但注意b2+2c2≠0,
所以2c2-b2>0,即3c2-a2>0.
即e2.故<e<1.
当b2-2c2=0时,y=0,此时kQF2不存在,此时F2为中点,-c=2c,得e=.综上得,≤e<1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点
(1)求椭圆的方程及其离心率;
(2)过椭圆右焦点的直线(不经过点)与椭圆交于两点,当的平分线为 时,求直线的斜率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆是椭圆的左右焦点,且椭圆经过点.
(1)求该椭圆方程;
(2)过点且倾斜角等于的直线,交椭圆于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点作倾斜角为的直线与曲线C交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左右焦点为,一直线过交椭圆于两点,则的周长为   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)如图,点P(0,﹣1)是椭圆C1+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E ,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)点,点G是轨迹上的一个动点,直线AG与直线相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的离心率,右焦点,方程的两个根分别为,则点在(   )
A.圆
B.圆
C.圆
D.以上三种都有可能

查看答案和解析>>

同步练习册答案