精英家教网 > 高中数学 > 题目详情
如图,已知圆E ,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)点,点G是轨迹上的一个动点,直线AG与直线相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.
(1)点Q的轨迹的方程为为.(2)以线段BD为直径的圆与直线GF相切.

试题分析:(1)连结QF,由于线段的垂直平分线上的点到线段两端点的距离相等,所以|QE|+|QF|=|QE|+|QP|=4,根据椭圆的定义知,动点Q的轨迹是以E,F为焦点,长轴长为4的椭圆.由此便可得其方程;(2)直线与圆的位置关系一般通过比较圆心到直线的距离与圆的半径的大小关系来确定. 由题意,设直线AG的方程为,则点D坐标为,由此可得圆心和半径.下面用k表示点G的坐标,求出直线GF方程为,进而求到圆心到直线GF的距离便可知道以BD为直径的圆与直线GF的位置关系.
(1)连结QF,根据题意,|QP|=|QF|,
则|QE|+|QF|=|QE|+|QP|=4
故Q的轨迹是以E,F为焦点,长轴长为4的椭圆.             .2分
设其方程为,可知,则,         ..3分
所以点Q的轨迹的方程为为. 4分
(2)以线段BD为直径的圆与直线GF相切. 5分

由题意,设直线AG的方程为,则点D坐标为,BD的中点H的坐标为
联立方程组消去y得
,则
所以, 7分
时,点G的坐标为,点D的坐标为.
直线GF⊥x轴,此时以BD为直径的圆与直线GF相切. 9分
时,则直线GF的斜率为,则直线GF方程为
点H到直线GF的距离,又
所以圆心H到直线GF的距离,此时,以BD为直径的圆与直线GF相切.
综上所述,以线段BD为直径的圆与直线GF相切. 13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心和抛物线的顶点均为原点的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在上各取两个点,将其坐标记录于下表中:


(1)求的标准方程;
(2)若交于C、D两点,的左焦点,求的最小值;
(3)点上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别是椭圆(a>b>0)的左、右焦点,若在直线x=上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(  )
A.       B.
C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在区间上分别取一个数,记为,则方程,表示焦点在y轴上的椭圆的概率是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案