精英家教网 > 高中数学 > 题目详情
在区间上分别取一个数,记为,则方程,表示焦点在y轴上的椭圆的概率是     .

试题分析:本题为几何概型概率,测度为面积,分母为矩形,面积为8,分子为直线在矩形中上方部分(直角梯形),因为面积直线正好平分矩形,所以所求概率为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)如图,点P(0,﹣1)是椭圆C1+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上的点到直线的最大距离是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E ,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)点,点G是轨迹上的一个动点,直线AG与直线相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左、右焦点为,过作直线交C于A,B两点,若是等腰直角三角形,且,则椭圆C的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆上任意一点P及点,则的最大值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与椭圆相交于两点,若椭圆的离心率为,焦距为2,则线段的长是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点为,椭圆轴正半轴交于点,与轴正半轴交于,且,则椭圆的方程为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案