精英家教网 > 高中数学 > 题目详情
椭圆上的点到直线的最大距离是                

试题分析:∵椭圆方程为∴可设椭圆上的任意一点P坐标为(4cosα,2sinα)∴P到直线的距离d=∵?4≤4∴d的最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为常数,过点的平行线交椭圆于两点.

(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,离心率为.设是椭圆长轴上的一个动点,过点且斜率为的直线交椭圆于两点.
(1)求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,其离心率
(1)求椭圆的方程;
(2)过坐标原点作不与坐标轴重合的直线交椭圆两点,过轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线的斜率的乘积是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆的右焦点为,离心率等于,则椭圆的方程是(    ) 
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设P是圆上的动点,点D是P在轴上投影,M为PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在区间上分别取一个数,记为,则方程,表示焦点在y轴上的椭圆的概率是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(已知双曲线的中心在坐标原点,焦点在轴上,A是右顶点,B是虚轴的上端点,F是左焦点,
当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率=_________;

查看答案和解析>>

同步练习册答案