精英家教网 > 高中数学 > 题目详情
20.焦点在坐标轴,中心在原点的双曲线的渐近线过点(3,-4),则双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.

分析 根据题意,结合题意双曲线的渐近线过点(3,-4),可得其一条渐近线方程,分2种情况讨论,若双曲线的焦点在x轴上,分析可得$\frac{b}{a}$=$\frac{4}{3}$,即b=$\frac{4}{3}$a,由双曲线的几何性质可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,由离心率公式计算可得此时双曲线离心率,若双曲线的焦点在y轴上,同理分析可得此时双曲线离心率,综合可得答案.

解答 解:根据题意,若该双曲线的渐进线过点(3,-4),则其一条渐近线方程为:y=-$\frac{4}{3}$x,
分2种情况讨论:
若双曲线的焦点在x轴上,设双曲线的方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,则其渐近线方程为y=±$\frac{b}{a}$x,
则有$\frac{b}{a}$=$\frac{4}{3}$,即b=$\frac{4}{3}$a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,
则其离心率e=$\frac{c}{a}$=$\frac{5}{3}$;
若双曲线的焦点在y轴上,设双曲线的方程为:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,则其渐近线方程为y=±$\frac{a}{b}$x,
则有$\frac{a}{b}$=$\frac{4}{3}$,即b=$\frac{3}{4}$a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{4}$a,
则其离心率e=$\frac{c}{a}$=$\frac{5}{4}$;
综合可得:双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.
故答案为:$\frac{5}{3}$或$\frac{5}{4}$.

点评 本题考查双曲线的几何性质,注意双曲线的焦点的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设△ABC面积的大小为S,且3$\overrightarrow{AB}$•$\overrightarrow{AC}$=2S.
(1)求sinA的值;
(2)若C=$\frac{π}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{1}{{\sqrt{{{log}_2}({3x-2})}}}$的定义域为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,则AC=(  )
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x∈R,符号[x]表示不超过x的最大整数,f(x)=$\left\{\begin{array}{l}{[x],x≤0}\\{\frac{1}{x},x>0}\end{array}\right.$,则使方程$\frac{f(x)}{x}$=m恰有三个实根的实数m的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$)B.(1,$\frac{3}{2}$)C.($\frac{4}{3}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:
男生女生合计
挑同桌304070
不挑同桌201030
总计5050100
(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2,求$\frac{k_1}{k_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的单调减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式及其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x、y满足关系$\left\{\begin{array}{l}x+y-2≤0\\ x-y+4≥0\\ y≥1\end{array}\right.$,则|$\sqrt{3}x$-y|的最大值为$3\sqrt{3}+1$.

查看答案和解析>>

同步练习册答案