精英家教网 > 高中数学 > 题目详情
8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,则AC=(  )
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

分析 1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,可得$\frac{sin(A+B)}{sinBcosA}$=$\frac{2c}{b}$,即$\frac{sinC}{sinBcosA}$=$\frac{2c}{b}$,利用正弦定理化为:cosA=$\frac{1}{2}$,A∈(0,π),可得A,再利用余弦定理即可得出.

解答 解:∵1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,∴$\frac{sin(A+B)}{sinBcosA}$=$\frac{2c}{b}$,∴$\frac{sinC}{sinBcosA}$=$\frac{2c}{b}$,
∴$\frac{1}{cosA}$=2,即cosA=$\frac{1}{2}$,A∈(0,π),
解得A=$\frac{π}{3}$.
由余弦定理可得:$(\sqrt{6})^{2}$=22+b2-4bcos$\frac{π}{3}$,
∴b2-2b-2=0,
解得b=1+$\sqrt{3}$.
故选:D.

点评 本题考查了正弦定理余弦定理、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2f(2-x)-x2+5x-5,则曲线y=f(x)在点(1,f(1))处的切线方程为(  )
A.y=xB.y=-2x+3C.y=-3x+4D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A、B、C所对的边分别为a、b、c,acosB=bcosA,4S=2a2-c2,其中S是△ABC的面积,则C的大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.5件产品中混有2件次品,现用某种仪器依次检验,找出次品.
(I)求检验3次完成检验任务的概率;
(II)由于正品和次品对仪器的损伤程度不同,在一次检验中,若是正品需费用100元,次品则需200元,设X是完成检验任务的费用,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.$x-\sqrt{2}y=0$B.$\sqrt{2}x-y=0$C.$\sqrt{2}x±y=0$D.$x±\sqrt{2}y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q为真,则实数m的取值范围是(  )
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.焦点在坐标轴,中心在原点的双曲线的渐近线过点(3,-4),则双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC中,AC=4,BC=2$\sqrt{7},∠BAC=\frac{π}{3}$,则AB的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则$\int_1^a{({{e^x}+2x})}dx$=(  )
A.e2-e+3B.e2+4C.e+1D.e+2

查看答案和解析>>

同步练习册答案