精英家教网 > 高中数学 > 题目详情
19.在△ABC中,内角A、B、C所对的边分别为a、b、c,acosB=bcosA,4S=2a2-c2,其中S是△ABC的面积,则C的大小为$\frac{π}{4}$.

分析 由正弦定理化acosB=bcosA,得出△ABC是等腰三角形,即a=b;由△ABC的面积S=$\frac{1}{2}$absinC,结合4S=2a2-c2,求出sinC=cosC,从而得出角C的值.

解答 解:△ABC中,acosB=bcosA,
∴sinAcosB=sinBcosA,
∴sinAcosB-cosAsinB=sin(A-B)=0,
∴A=B,∴a=b;
又△ABC的面积为S=$\frac{1}{2}$absinC,
且4S=2a2-c2
∴2absinC=2a2-c2=a2+b2-c2
∴sinC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=cosC,
∴C=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题考查了正弦定理、余弦定理和三角形面积公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知由一组样本数据确定的回归直线方程为$\hat y=1.5x+1$,且$\overline x=2$,发现有两组数据(2.6,2.8)与(1.4,5.2)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1.4,那么当x=6时,$\hat y$的估计值为(  )
A.9.6B.10C.10.6D.9.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC面积的大小为S,且3$\overrightarrow{AB}$•$\overrightarrow{AC}$=2S.
(1)求sinA的值;
(2)若C=$\frac{π}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知复数$\frac{2+i}{a-i}$(其中a∈R,i是虚数单位)是纯虚数,则a的值为(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=a2+x2-xlna-b(a,b∈R,a>1),e自然对数的底数.
(Ⅰ)当a=e,b=4时,求函数f(x)零点个数
(Ⅱ)若b=1,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足iz=l+3i,其中i为虚数单位,则$\overline z$=(  )
A.-3+iB.-3-iC.3+iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{1}{{\sqrt{{{log}_2}({3x-2})}}}$的定义域为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,则AC=(  )
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的单调减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式及其图象的对称中心.

查看答案和解析>>

同步练习册答案