精英家教网 > 高中数学 > 题目详情
16.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则$\int_1^a{({{e^x}+2x})}dx$=(  )
A.e2-e+3B.e2+4C.e+1D.e+2

分析 二项式(2x+a)5的展开式中,含x2项,利用通项公式求出含有x2的项,可得系数,从而求出a,利用定积分公式求解$\int_1^a{({{e^x}+2x})}dx$即可.

解答 解:二项式(2x+a)5的展开式中,含x2项,
由通项公式${T}_{r+1{=C}_{5}^{r}}{a}^{r}(2x)^{5-r}$,
∵含x2项,
∴r=3.
∴含有x2的项的系数为${C}_{5}^{3}{a}^{3}{2}^{2}$=320,
可得:a=2.
则$\int_1^a{({{e^x}+2x})}dx$=${∫}_{1}^{2}{e}^{x}{d}_{x}+{∫}_{1}^{2}2x{d}_{x}$=e2-e+22-1=e2-e+3.
故选:A.

点评 本题主要考查二项式定理的通项公式的应用,以及定积分公式的计算.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,则AC=(  )
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的单调减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式及其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{b}$|=|$\overrightarrow{a}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.右程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为24,39,则输出的a=(  )
A.2B.3C.4D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x、y满足关系$\left\{\begin{array}{l}x+y-2≤0\\ x-y+4≥0\\ y≥1\end{array}\right.$,则|$\sqrt{3}x$-y|的最大值为$3\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且2Sn=4an-1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an•an+1-2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入t的值为5,则输出的S的值为(  )
A.$\frac{11}{8}$B.$\frac{9}{16}$C.$\frac{5}{4}$D.$\frac{21}{16}$

查看答案和解析>>

同步练习册答案